Large majority of EU countries will hit 2030 solar targets ahead of schedule, according to new data.

  • o_oli@lemmy.world
    link
    fedilink
    arrow-up
    27
    ·
    1 year ago

    This part is interesting:

    As solar becomes increasingly widespread and electricity prices plummet in the middle of the day when the sun is brightest, some see a risk that the incentive to deploy solar power also decreases, said Esparrago.

    That makes grid improvements and the rapid rollout of storage technologies like batteries crucial, experts argue. But the EU is still lagging behind in that area.

    I wonder however how far we are from that? There is probably a lot of incentivising that can be done to get people and industry to use this ‘surplus’ daytime energy up surely. Its weird because its usually the opposite with cheap night rates - I know many people who intentionally consume energy overnight instead of the day because its cheaper. Flip that on its head maybe that isn’t as pressing an issue?

    • Sconrad122@lemmy.world
      link
      fedilink
      arrow-up
      20
      ·
      1 year ago

      The issue isn’t really comparing high noon to midnight. The issue is comparing prices at either high noon (when supply is large) or midnight (when demand is small) to the space in between, especially dinnertime (when demand peaks just as solar supply finishes tailing off). There are ways to move some of that peak into noon (e.g: if homes are well insulated, they can be cooled or heated while solar is still up and used as a thermal battery to at least bridge over to the nighttime hours), but some of the peak is much harder to shift around. If everybody starts cooking and turns on the television around dinnertime, the only way to distribute that is to stagger dinnertime, which is easier said than done for a lot of people’s schedules. Having power storage to bridge that gap (wouldn’t it be nice if everyone that has an electric car got home and used whatever range they had leftover in their battery to absorb their extra demand and then start charging again at nighttime rather than immediately start charging at the worst time of day. Or having solar plants that store excess daytime power in thermal, hydro, or chemical batteries to discharge and increase supply later) is likely easier than convincing enough people to work odd shifts or delay their after work leisure activities

      • NoiseColor@startrek.website
        link
        fedilink
        arrow-up
        1
        ·
        1 year ago

        If that’s the case or becomes the case, isn’t it easily solvable since the batteries only need to store the energy for a few hours? Maybe some spinning wheel thing?

        • Sconrad122@lemmy.world
          link
          fedilink
          arrow-up
          3
          ·
          1 year ago

          It is a very solvable problem, and mechanical or thermal batteries are likely to be at least part of the solution. Of the three kinds of gaps/shortfalls that grid storage would have to cover, the milliseconds-long and hours-long gaps are probably the easiest to solve. The days-long gaps (stretches of cloudy days, low winds for extended periods) is probably the most expensive to solve, but even those are not really that difficult (hydro storage is a tested technology that works well and HVDC transmission linking regions together can allow local shortfalls to be covered by remote surpluses). It’s all more a matter of building capacity than needing new technology to solve an unsolvable problem, from what I understand

        • Perfide@reddthat.com
          link
          fedilink
          arrow-up
          2
          ·
          1 year ago

          Longevity is the big problem. Every practical method of energy storage I can think of is negatively impacted by frequent charge discharge cycles. Even a flywheel like you suggest would eventually need new bearings, need rebalancing, etc…

    • schroedingershat@lemmy.world
      link
      fedilink
      arrow-up
      4
      ·
      edit-2
      1 year ago

      Batteries will hit break-even with the split on peak vs off-peak electricity starting in a year or two.

      Current retail consumer batteries (installation consisting of screw it to a wall and plug in three wires if you have a compatible inverter) are at around $280/kWh or 75c per kWh if you use it daily to load shift for one year. About 15c over 5 years. Halve that and anyone buying on peak electricity in a high-price area is going to be very interested in a battery rather than paying the next two quarters’ electricity bills. Quarter it (which is conceivable once sodium ion scales enough to meet utility demand) and average-price areas are looking at it real hard

      EVs are hitting $1000/kWh pre-subsidy in the west or $300/kWh in china for the entire car. V2L or V2G becomes very appealing for anyone not using their car during the day.

    • reddig33@lemmy.world
      link
      fedilink
      arrow-up
      2
      arrow-down
      1
      ·
      1 year ago

      A long way away I would guess. People will need more air conditioning during the day. Pretty much need solar on every rooftop to even begin to cover that. By making rates cheaper during the day it means demand will also go up as people run their appliances and charge their cars when rates are cheap.

    • krische@lemmy.world
      link
      fedilink
      arrow-up
      1
      ·
      1 year ago

      I wonder what the turnaround time is for some of the more mountainous countries like Switzerland to build out pumped hydro.