• Move to lemm.ee@lemmy.world
    link
    fedilink
    arrow-up
    140
    arrow-down
    3
    ·
    1 year ago

    This isn’t just mildly interesting. We should be considering methods of air cooling that do not use any carbon in order to avoid aircon usage becoming a contributor to the climate problem as things get hotter and hotter.

    • MetaCubed@lemmy.world
      link
      fedilink
      arrow-up
      96
      ·
      edit-2
      1 year ago

      I agree with you that we should be exploring alternatives, but aircon is extremely energy efficient for how much thermal energy it moves (reaching 400% efficiency in some cases) . The problem isn’t aircon itself, but what is being used to power it (coal/natural gas power plants)

      In fact the technology behind aircon can be expanded into a heat pump to both heat and cool, being more efficient than electro-resistive or gas heating. There’s even water heaters that will actually cool the area they’re in and use the heat they gather from the space to heat the water.

      Technology Connections has a great series of videos that go in depth on both heat pumps and aircon.

      • spongebue@lemmy.world
        link
        fedilink
        arrow-up
        18
        ·
        1 year ago

        Yeah, “air conditioning powered by solar/wind/hydro” can feel like it’s one big Rube Goldberg machine to make air cool, but the reality is that it comes together to make something that can scale really easily. I can’t imagine coming up with a design like what’s in OP for an apartment complex or condo building.

        Source: just made it up, but also a Technology Connections fan. All that’s to say, feel free to correct me with a little data

        • Beliriel@lemmy.world
          link
          fedilink
          arrow-up
          1
          ·
          1 year ago

          It scales pretty easily. A Yak’chal is basically an early version of a cooling tower. And they regularly get used for bigger house complexes.

      • grue@lemmy.world
        link
        fedilink
        English
        arrow-up
        8
        arrow-down
        1
        ·
        1 year ago

        400% efficiency is good, but it’s not better than the ∞% efficiency you get from something that doesn’t require fuel input to begin with. (I’m pretty sure the Technology Connections guy would agree on that point.)

        If nothing else, think of it this way: even if you still want to use air conditioning to make sure you get all the way down to comfortable room temperature or whatever your target is (which a Qanat, although able to achieve a >15°C ΔT, might or might not be able to do reliably), it’ll still give you a big head start and greatly reduce the amount of energy needed. It’s a lot like using a ground-source heat pump instead of an air-source one. What’s not to like‽

        • MetaCubed@lemmy.world
          link
          fedilink
          English
          arrow-up
          8
          ·
          1 year ago

          Sorry my point wasn’t that we shouldn’t explore other options to use instead of/in tandem with A/C. I was entirely pointing out that the use of an AC/heatpump is by itself, in absence of the context of what is used to power it, a non issue as its one of the most efficient electric heating/cooling technologies we have.

          Wind catchers could be, and likely are a great technology to adapt for wider use, though I can’t speak to that, I’m not an HVAC engineer.

        • TheSaus@lemmy.ml
          link
          fedilink
          arrow-up
          5
          ·
          1 year ago

          IIRC for every watt of electricity, 4 watts of energy get moved from the inside bit of your AC to the outside unit

        • MetaCubed@lemmy.world
          link
          fedilink
          arrow-up
          2
          ·
          edit-2
          1 year ago

          Sorry, my notifications have been messed up because of the lemmy.world issues! Some other people have already answered but I’ll still reply :)

          A heat pump’s efficiency is measured differently than that of a gas furnace.

          The actual unit for heat pumps is the Coefficient of Performance (CoP). This measures the power input (electricity) VS the power output (heat). A “400% efficiency” as I put it, is a CoP of 4, meaning that for every watt of power used, 4 watts of heat energy are moved. As some other people pointed out, depending on the quality and technology of the heat pump and the interior/exterior temperature, the actual range of a heat pump is a CoP of anywhere from 2-5.5 (the theoretical, perfect maximum is 8.8). The efficiency of the heat pump does dip as the temperature of the region it’s pulling heat energy from lowers, there’s less energy available to move, so it has to work harder. This is why heat pumps in regions with especially cold winters have what’s usually called “emergency heat” which brings us to…

          Electrical heating. This works by pushing electricity through a wire to heat it up. Directly turning electricity into heat. Electrical heating always has a CoP of 1 (terms and conditions apply). For each watt of electrical power consumed, 1 Watt of heat energy is produced.

          Finally we have gas heating, which is still the only option for some areas for various reasons. Gas heating efficiency is not measured with CoP but instead with Annual Fuel Utilization Efficiency, simply a number that represents what % of the fuel burned is actually turned into useful heat energy. I’m finding AFUE ranges of 76-97% as a general range for modern furnaces. If a furnace has an AFUE of 90%, that means that when it burns an amount of fuel representing 100 units of heat potential (I’m not using a unit, BTUs confuse and terrify me) then 90 of those units will be turned into usable heat, and 10 of them will be waste, whether that is heat that leaves via the chimney or is simply unburnt fuel.

          TLDR: 400% means 4x more energy is moved than is used, I apologize for the wordiness, I find this stuff rather interesting

        • Redex@lemmy.world
          link
          fedilink
          arrow-up
          1
          ·
          1 year ago

          What the other guy said. It’s down to the fact that you aren’t actually heating/cooling down a room, you’re just moving the heat already there around. E.g. in winter, instead of producing your own heat with electricity, which is 100% efficient, you take heat from the outside and put it inside, using a lot less energy in the process than if you were to create the heat inside of your home.

          Though I’m not sure if it’s that efficient, I think I heard it’s more around the 150-200% mark, but I’m not sure.

          • Claidheamh@slrpnk.net
            link
            fedilink
            arrow-up
            3
            ·
            edit-2
            1 year ago

            I think I heard it’s more around the 150-200% mark

            Most cheap air conditioners have COPs (coefficients of performance) around 3.2-3.5, which means 320-350% efficiency. In real world conditions, the best systems reach 4.5, though the theoretical limit is about 8.0.

            • chronically_crazy@lemmy.world
              link
              fedilink
              arrow-up
              1
              ·
              1 year ago

              3.2-3.5 is also on a good day. It might not be as efficient when the outside temperature differences are further away from your thermostat setting inside, though if you have a geothermal setup, then you’ve got peak efficiency year round.

    • Clbull@lemmy.world
      link
      fedilink
      arrow-up
      3
      ·
      edit-2
      1 year ago

      I had a crazy thought. What if you used depressurization to cool interiors?

      Not as in depressurize the room and potentially kill the people inside, but in a way similar to soundproofing where you create an airtight gap in your walls, depressurize it to create a partial vacuum and effectively restrict both heat and sound transfer. That way it would be much easier to control internal temperature.

      The only two problems I can see with it is expense (pumping air out of the gaps between your walls could be pricey), and the potential of explosive repressurization if something were to break the wall.

      • HumbertTetere@feddit.de
        link
        fedilink
        arrow-up
        6
        ·
        1 year ago

        Wall isolation is pretty fine as it is, main weaknesses are windows and thermal bridging.

        We still have the issue that a perfectly isolated house will need to lose the heat created by humans and electric systems, so actual cooling is required.

      • And how do you get fresh air in? Also the problem of heat transfer is never by gaps in the walls, at least not for buildings in western and central Europe. The problem is heat conduction through the window panes. And that is with isolated windows already. Also it is impossible to get a brick wall air tight. Leave alone you create a great environment for water to leak in and damage everything.

        A building needs to be able to “breathe” in order to get rid of the humidity that is generated inside.

    • Lazz45@sh.itjust.works
      link
      fedilink
      arrow-up
      0
      ·
      1 year ago

      This would be a great idea if you want everyone in that building to file humidity complaints every single day. Air conditioners work by using mechanical work (compressor) to exploit evaporation in order to pull heat from one location to another and exhaust it away, in turn cooling the first location (this could be air, water, etc.)

      This system works by using ground temp water as a heatsink to suck heat out of the air passing over it. When it does this, it humidifies the air. In the desert…who cares? In an office building…who cares? Every single worker who is stuck there all day

      If you’re saying we need better systems than the AC unit you grew up with, fear not! Many office buildings have been moving away from it (same with other large venues) they use a chilled water system. They use the best of both these systems to get WAY more performance out of way less wattage. You only need a fraction of the cooling power with a chilled water system because the water can absorb much more heat per unit mass than air and can be sized to never run during the day, but only at night when the grid is least in use