A is drawn in such a way that it resembles a right angle, but it is not labeled as such. The length of the hypotenuse is given as zero. The opposite angle cannot be anything but 0°.
What is depicted here isn’t even a polygon, let alone a triangle, let alone a right triangle. This is just a line segment. Line AB is the same as line AC. There is no line BC. BC is a single point.
I suppose it could possibly depict a weird cross section of two orthogonal circles in a real and an imaginary plane.
Now calculate the angles
That’s actually pretty easy. With CB being 0, C and B are the same point. Angle A, then, is 0, and the other two angles are undefined.
A is clearly a right angle
A is drawn in such a way that it resembles a right angle, but it is not labeled as such. The length of the hypotenuse is given as zero. The opposite angle cannot be anything but 0°.
The pythagoras theorem only holds if A is a right triangle
What is depicted here isn’t even a polygon, let alone a triangle, let alone a right triangle. This is just a line segment. Line AB is the same as line AC. There is no line BC. BC is a single point.
I suppose it could possibly depict a weird cross section of two orthogonal circles in a real and an imaginary plane.
No thank you